Entanglement and tts key role in quantum information

Spyros Tserkis
Postdoctoral Fellow

CMSA Interdisciplinary Science Seminar
June 30, 2022




Outline of the Presentation

® Introduction

+ Classical properties and states

+ Quantum properties and states
e Entanglement

+ Entanglement definition

+ Entanglement detection

+ Entanglement quantification

e Applications

+ Teleportation



Outline of the Presentation

® Introduction

+ Classical properties and states

+ Quantum properties and states



Classical Systems

A classical property is represented
by a real-valued number

A classical system is represented
by a point in the phase space

A noisy classical system is represented by a
probability distribution in the phase space
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Dirac Notation

o A column vector is represented with a “ket”, e.g.,
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e A row vector is represented with a “bra”, e.g., (y| = |[¢ d

o A ket can be transformed into a bra as follows: |x) — (z| =

» The inner product is represented as a bra-ket (y|x) = [c d}
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* The outer product as |z )(y| = [C d} —
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e We consider the computational basis |0) =

[a* b*} — |$>T(conjugate transpose)
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Quantum Systems — Observables
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A quantum property, known as quantum observable, is represented by a Hermitian matrix
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Observable with finite possible values

Observable with infinite possible values

* Those matrices have real eigenvalues and represent the possible outcomes of measurements.

X ... K L. TTTTTTTTTTOOT
3 -2 -1 0 1 2

position of a particle

L
|
3

>

X o.ee. X electron spin polarization

electron excitation

AN

\4

VVVV?

wave amplitude

_,




.

Quantum Systems — States

A quantum system is represented by a normalized vector known as the quantum state

probability

State superposition:|i)) = a |0) + b|1)

1) 0y L|1) < (o)1) >

All states have the same length, i.e., normalized
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Examples of 2-dimensional States

probability
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A d-dimensional quantum state
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Example of n-dimensional States
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Quantum Evolution

™~

The evolution of a quantum state is described by a unitary transformation on the quantum state

V) = U )

o Unitary IS a matrix that satisfies: UU]L — U]L U =1 (preserves normalization)
X =[0)X1] +[1)}0] Y = —o(|OX1] = [1XO0])  Z = |OX0] — |1 )1]

» When [J = ¢*Ht/hwhere H is the Hamiltonian of the quantum system and A the reduced
Planck constant the evolution is given by the Schrodinger equation

d
Zh& V) = H |1)
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Quantum Systems — States

A noisy quantum system is represented by a positive unit-trace matrix known as the
gquantum state

\_

A quantum state that is an outer product of a vector is called pure quantum state
otherwise it is called mixed quantum state

* The spectral decomposition of an e

arbitrary quantum state is 11 Y1) | quantum states QM
(]

R sz- 1) ;) o mixed state
@
S = p1 |1 (Y1 + p2 |2 2] 91)(¢1] pure state
< -
= p1 |P1)D1] + P [P2)(2] 2 (12

e The evolution of a mixed quantum state is givenby § — US U




State Interpretation
probability

M. Born A. Einstein N. Bohr

0) 1)

Quantum State Inteirpretation Probability Interpretation

A quantum state corresppnds to g/statistical
ensemble of independént and identically
prepared copies of a quantum system

Frequentism: The relative frequency of an
event in the limit of sufficient many trials

A quantum state provide%;énplete Bayesianism: The degree of confidence of
description of an individual quantum system | a hypothesis based on the prior knowledge

N :

many worlds pilot waves Copenhagen interpretation quantum Bayesianism
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Composite States

Composite states: [¢)") =

Can we always decompose

a given vector into a N 0 N
tensor product of vectors? - -
Answer: No!

1
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Entanglement

A composite guantum state that cannot be written as a tensor product of two smaller
guantum states is called entangled state

) # ) @ [)?)

Otherwise it is called separable or product state.

 Entangled systems share a common property, but we don't know which part has which
share until we measure it.

e For example, two particles have a total (sum) spin of zero, but we don't know the spin of
each individual particle before we measure it.
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g What Entanglement is NOT

up to 44 kilometer. @Caltech & @Fermilab scientists
teleported quantum info for a sustained period across
distance of 44 km via quantum entanglement
teleportation.

Einstein was wrong on this one. The link between two
electrons vibrating in unison does send information
faster than light. But Einstein still has the last laugh,

because... ingnet.caltech.e Quantum weirdness wins again:

A v DI THeren e | Entanglement clocks in at 10,000+
Quantum "spooky action at a distance"” times faster than light
travels at least 10,000 times faster than

NASA scientists achieve long-distance
'‘quantum teleportation' over 27 miles
for the first time - paving the way for
unhackable networks that transfer
data faster than the speed of light

light

e Entanglement DOES NOT allow faster-than-light communication.

K e Entanglement DOES NOT contain information. It contains correlations about information.

Far Apart, 2 Particles Respond Faster Spooky! Quantum Action Is 10,000 Times
Than Light Faster Than Light
) (&) (X Can quantum entanglement send info faster than light? BREAKING—Successtul faster-than-speed-ot-light
" Yes ' demonstration of "QUANTUM TELEPORTATION** of

™~




Classical Correlations
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The gloves are perfectly correlated but no information has traveled from one place to another!
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Quantum Correlations

Alice Bob

1

— (/0B + |10))
f|ll \

or

e The spins are perfectly correlated but no information has traveled from one place to another!

e S0, what how are quantum correlations different from classical ones?

,




Alice

Quantum Correlations
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Quantum Correlations
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Quantum Correlations
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Alice

Quantum Correlations
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Quantum Correlations




Quantum Correlations

e Quantum correlations are stronger than classical correlations

e |n quantum systems multiple properties can be simultaneously correlated




Characterizing Entanglement

{le;), |hi)} : orthonormal basis

Schmidt decomposition: |V
{Xo, A1} : Schmidt coefficients

= Z\@\eﬁ & |h;)

e The number of non-zero Schmidt coefficients identifies entanglement
M=1& M =0 = |¥)=ley) ®|ho) (separable)
MF0 & A\ #0 = |U) = Xgleg) ® |ho) + Aler) ® |h1) (entangled)

e Entanglement is the superposition of composite quantum systems

V) =

(100) +11)) Ao =X =

1 1
V2 V2




Characterizing Entanglement

{le;), |hi)} : orthonormal basis

Schmidt decomposition: |¥) = Z V Ailei) @ |hi)
- {0, A1} @ Schmidt coefficients

e The number of non-zero Schmidt coefficients identifies entanglement
M=1& M =0 = |¥)=ley) ®|ho) (separable)
MF0 & A\ #0 = |U) = Xgleg) ® |ho) + Aler) ® |h1) (entangled)

e Entanglement is the superposition of composite quantum systems

o) = lef”) = 5=(10) + 1)
mf>:%(\oo>+|o1>+\1o>+\11>) No=18& A =0 {
ety = |l = (0= 1)
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Entanglement in Mixed States

G(AB)

Uncorrelated
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Detecting Entanglement

Assuming complete knowledge of the quantum state .S, entanglement detection
reduces to the verification of a mathematical condition.

(Peres-Horodecki Criterion) Let us have a quantum state .S and a positive map M : M(S) — S’
For separable states the map |[M ® 1|(.5) must yield a positive operator.

1 0 0 1
o - 110 0 0 C
p— : % — =
M =T :i)jl = i) @ 210 0 0 C
10 0 1
1 0 0 O
1lo 0o 1 ¢ . !
TOLIP =510 1 0 of M=rk=k=5 M=
00 0 1

A. Peres Phys. Rev. Lett. 77, 1413 (1996) J
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Detecting Entanglement

Assuming no prior knowledge of the quantum state S, entanglement detection can be
achieved using specially designed measurements, known as entanglement witnesses.

An entanglement witness is a Hermitian operator that yields a non-negative mean value with
respect to any separable state. Thus, the detection of a negative value implies entanglement

‘ES(W) <0=2S5": entangled W = ZCiin 02 Bj Cij € R

]

separable

states entangled
states

0. Guhne et al. Mod. Opt. 50, 1079 (2003) J
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Detecting Entanglement

Assuming no prior knowledge of the quantum state S, entanglement detection can be
achieved using specially designed measurements, known as entanglement witnesses.

An entanglement witness is a Hermitian operator that yields a non-negative mean value with
respect to any separable state. Thus, the detection of a negative value implies entanglement

is(W) < 0= S5: entangled W:ZCz’in@Bj cij €R
o]
10 0 1 W=21,-0C
110 0 0 O
@:5 S O G O C:A1®Bl—|—A1®BQ+A2®Bl_A2®B2
10 0 1 1 0 0 1
A1: _O _1_ AQZ _1 O_
L (W) = tr(W) =2 - 2v2 <0 Bi= (A +A2)/V2  By=(As— A1)/V2

0. Guhne et al. Mod. Opt. 50, 1079 (2003) J
30




\_

Quantifying Entanglement

T R1|(S) <0 Ai @ eigenvalues of [T ® 1](.5) Negativity En (9) = Z \;

detects entanglement M; <0

separable ‘W\ What is the minimum distance
between an entangled state and
the set of separable states?

states entangled

states

Relative entropy :
Er(S) = min H(S||Sse H(X||Y) =tr(Xlog X) —tr(Xlog Y
of entanglement r(S) Ssep (5]]55ep) (XIIY) r(X log X) —tr(X log Y')

G. Vidal and R. F. Werner Phys. Rev. A 65, 032314 (2002)
V. Vedral et al. Rev. Lett. 78, 2275-2279 (1997)
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a Quantifying Entanglement A

@ distillation @ Q distillation l l l |

e \What is the maximum amount of Bell

n
@m LOCC N FEp := max {—}
states we can distill from a state? S — |9 LOCC Lm

Distillable entanglement  Ep(5) = Sup{ lim 1[1{1{3 A (S®™) — (|PXP)™ ]|, | = O}

T

e \What is the minimum amount of Bell

9on  LOCC . _ { n }
states used to create a state? ) > S to = min,
e : : XN Tn __
Entanglement cost Ec(S) = inf {nh_ggo 1/I\1f 1S A; [(|PN D) H1 O}

k C. H. Bennett et al. Phys. Rev. Lett. 76, 722-725 (1996) J
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Quantum Teleportation

classical communication

-------
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- - il
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é
Quantum teleportation DOES NOT
, quantum output
occur faster than the speed of light
gates state
Lab A (Alice) Lab B (Bob)

inpuH
State

)

“guantum
gates,

1
2) = — output

e u & state

C. H. Bennett, et al., Phys. Rev. Lett. 70, 1895 (1993) J

resource state
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Quantum Teleportation

0) +11)

‘¢>in — \/5

0 :\/1—x|00>+\/5|11>{

r=0= |¥)=100) (separable)

1 1
r=o = 0) = \ﬁ(\O()} + |11)) (entangled) 0_82_ 00) + [11))

F maximally
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Conclustion

e Entanglement is a fundamental physical property
e Entanglement is used as a resource in quantum technology applications

e Characterization of entanglement is an interesting mathematical problem
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