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+ When Classical Mechanics Fails

+ Review of Classical Systems
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When Classical Mechanics Fails
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When Classical Mechanics Fails
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Wave-particle Duality
A particle can be thought of as both a particle and a wave
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A property is represented by a real-valued number

A system is represented by a point in the phase space

Evolution of a property/state is deterministic
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Classical Systems

™~

° position ¢
) | | | | | | | [ | | | I | >
-3 -2-1 0 1 2 3 momentump
Pt state of
______________ ° / the system
(¢:p) €Ry
< ! 1 q»
dg _»
dt m
dp
< R E — f
' q




.

\_

Dirac Notation

* A column vector is represented with a “ket”, e.qg., |T

=1

» A row vector is represented with a “bra”, e.g., (y| = [c d}

* A ket can be transformed into a bra as follows: |z) — (x|

e The inner product is represented as a bra-ket (y|z) = [¢ d|

e The outer product as |z)(y| = Z c d| =

e We consider the computational basis |0) =

ac ad
be bd| 9
é_ and |1) =

[CL* b*} — |.513>Jr (conjugate transpose)

a

b

—a-c+b-d

)yl - |2) = |x) (y|z) = (y|2) |z)

Jg
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® Quantum Observables
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Quantum Observable

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

e Those matrices have real eigenvalues and represent the possible outcomes of measurements.

 E£.9., Photon detection is a binary property that can be represented by a matrix:

1 1 0
€A Do Do = [0)(0] = |, 1 0] = 0 0| Eigenvalues: 0and 1

/ \ Detection: 1 Non-detection: O
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Quantum Observable

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

e Those matrices have real eigenvalues and represent the possible outcomes of measurements.

 E£.9., Photon detection is a binary property that can be represented by a matrix:

1
N\ D Dy = |0Y0| = h [1 ()} —
Detection: 1
o
Dy = [1)1[ = || [0 1] =
single D = )\0D() + )\1D1 — (1)
photon -

A S

eigenvalues

quantum measurements

o

_O O_

Eigenvalues: O and 1

Non-detection: O

0
1

)

Eigenvalues: O and 1

Ao =1
Ao # A1 )\10:_
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Quantum Observable

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

e Those matrices have real eigenvalues and represent the possible outcomes of measurements.

 E.9., Polarization is a binary property that can be represented by a matrix:

1 1 0
Iy = |0)0] = |, 1 0] = 0 0| Eigenvalues: 0 and 1
11 o ] )
Pass: 1 No pass: O
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Quantum Observable

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

1l = )\()H() -+ )\1]71 —

eigenvalues

Iy = [0Y0] = [o] [1 0] =
114 o
Pass: 1
— = |, [0 1

 E.9., Polarization is a binary property that can be represented by a matrix:

e Those matrices have real eigenvalues and represent the possible outcomes of measurements.

1 0| _
0 0 Eigenvalues: O and 1
No pass: O
0 0] _
1o 1 Eigenvalues: O and 1
0 A =1
_1_ >\O # >\1 )\1 _

<><> quantum measurements

,
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Different Types of Observables \

Observable with two possible values xx \/

%
%

photon OT:r(i);;)tri]on electron spin current flow
detection P
x ... K
Observable with finite possible values
x . % clectron number of particles,
i } excitation e.g., photons
o N _
N EE . = AN
Observable with infinite possible values N N - ,
]l -3 -2 -1 0 1 2 3 \/\/\/\/t
position of a particle v

- ' ' - wave amplitude
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Quantum System

A classical system is represented by a point in the phase space
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A quantum system cannot be represented as a point due to the uncertainty principle V(Q)V(P)
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Quantum System

A classical system is represented by a point in the phase space

A quantum system is represented by a function in the phase space, e.g., Wigner function
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P

vacuum W two photons

9

A quantum system cannot be represented as a point due to the uncertainty principle V(Q)V(P)

g : outcome of ()

1 O
W / dxexp{@}<q—§zp> <1p q+§> p : outcome of P

“An | 2 2 ) |
Z : auxiliary variable

7)) : quantum state
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Quantum System

A classical system is represented by a point in the phase space

A quantum system is represented by a function in the phase space, e.g., Wigner function

P
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A quantum system cannot be represented as a point due to the uncertainty principle V(Q)V(P)
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Quantum State

A quantum system, known as quantum state, is represented by a vector

State Superposition: [¢)) = a|0) + b|1) 1)

ATy — 0) L[1) & (0]1)

. probability

D a|0) 10)

All states have the same
length, I.e., normalized

af? + [bf* = 1 >




Quantum State

A quantum system, known as quantum state, is represented by a vector

State Superposition: [¢)) = a |0) + b |1) 1)

ATy — 0) L[1) & (0]1)

. |()> . probability

0)
b|?
All states have the same
length, i.e., normalized \a|2
2 2
al“ + b =1 >
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Quantum State after a Measurement

Let us have the quantum state [¢)) = a |0) + b|1)

Post-measurement state |¢>

]

af*
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Examples of 2-dimensional States

Photon Detection

0) )

®°

Electron Spin

¥) =al0) +b]1)

Electron Excitation

1)

Photon Polarization

Current Flow
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Higher-Dimensional States

A d-dimensional guantum state
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Quantum State Interpretation

M. Born A. Einstein N. Bohr

Quantum State Interpretation

A quantum state correspbnds to a/statistical
ensemble of independent/and idewitically prepared
copies of a quantum gyster

. probability

0) 1)

Probability Interpretation

Frequentism: The relative frequency of an event
in the limit of sufficient many trials

|
A quantum state proxéeé complete

description of an individual quantum system

Bayesianism: The degree of confidence of a
hypothesis based on the prior knowledge

=

—

wany worlds pilot waves Copenhagen interpretation quantum Bayesianism
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® Evolution in Quantum Systems



Evolution of a Quantum System

dx
The evolution of a classical property is deterministic T Y
: . ... dX
The evolution of a quantum property is deterministic ke Y

The evolution of a quantum state is described by a unitary transformation on the quantum state

V) = U )

e Unitary is a matrix that satisfies: UUT = UTU = 1 (preserves normalization)

e When [J = ¢*Ht/" where H is the Hamiltonian of the quantum system and h the reduced Planck
constant the evolution is given by the Schrodinger equation

d
@h& V) = H |1)

,
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Example of Quantum Evolution

Let us have the quantum state |¢)) = \[ 0) + \/7 1)

evolving according to the unitary matrix X = |0)1| + |1)0|

X [16) = (o)1 + [1)0]) ( S10)+4/5 1)

1 0 2 1 1

— §|0>W+ §|0>M+ §\1>
2 1
=30+ 3 D

Z = |0X0] = [1)]  Z|y) =7

_(X+2)  H[p)=?
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Quantum Information

In classical information theory we encode information onto bits

bit: O or 1

In quantum information theory we encode information onto quantum bits (qubits)

qubit: a|0) +b[1) — [0) or |1) C

) =al0) +b|1) =eX (cosg 0) + e'¥ Sing \1})

x € [0,2m

p € (0,27
0 € |0, 7]

Qubit contains a bit as a special case

Bloch Sphere

\_ I




Next Week

® Lecture 2 — Teleportation and Entanglement (April 20, 2022)

® Lecture 3 — Decoherence and Quantum Networks (April 27, 2022)

slides can be found at: spyrostserkis.com

you can reach out to me at: spyrostserkis@gmail.com
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