Quantum Systems, Information, and Entanglement Lecture 1. Introduction to Quantum Systems

Spyros Tserkis

Postdoctoral Fellow

April 13, 2022

Center for Quantum Networks

There are four main thrusts to CQN:

Thrust 1: Quantum network architecture

Thrust 2: Quantum sub-system technologies

Thrust 3: Quantum materials, devices and fundamentals

Thrust 4: Societal impact of the Quantum Internet

webpage: cqn-erc.org

email: info@cqn-erc.org

Center Director Professor, University of Arizona

Co-Deputy Director & Trust 4 Co-Professor of Law, University of

CQN Administrative Director

Innovation Ecosystem Director Executive in Residence, University of

Dirk Englund Co-Deputy Director, Testbed Co-Lead Associate Professor, MIT

Testbed Co-Lead Assistant Professor, University o

Nena Bloom

CQN Evaluation Coordinator Evaluation Coordinator, Center for Science Teaching and Learning Northern Arizona University

Don Towsley

Thrust 1 Co-Lead Distinguished University Professor. **UMass Amherst**

Leandros Tassiulas

Thrust 1 Co-Lead John C. Malone Professor of **Electrical Engineering & Computer**

Hong Tang

Thrust 2 Co-Lead Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics, Yale

Mikhail Lukin

Thrust 2 Co-Lead George Vasmer Leverett Professor of Physics, Harvard

Prineha Narang

Thrust 3 Co-Lead Assistant Professor, Harvard

Marko Lončar

Thrust 3 Co-Lead Tiantsai Lin Professor of Electrical Engineering and Applied Physics,

Catherine Brooks

Thrust 4 Co-Lead iSchool Director and Associate Professor, University of Arizona

Allison Huff MacPhersor

Engineering Workforce **Development Director** Assistant Professor, University o

Stephanie Hurst

Diversity & Culture of Inclusion Director, Thrust 3 Researcher Associate Professor and Interir Chair, Inorganic Chemistry, Northern Arizona University

Inès Montaño

Engineering Workforce Development Co-Director, Thrust 1 Associate Professor, Northern Arizona University

Tina Brower-Thomas

Diversity & Culture of Inclusion Co Director. Thrust 3 Researcher **University Graduate School**

Liang Jiang

CQN Senior Personnel Professor, University of Chicago

Karl Berggren

CQN Senior Personnel

Linran Fan

CQN Senior Personnel Assistant Professor, University o

Yury Polyanskiy

CQN Senior Personnel Associate Professor, MIT

Quntao Zhuang

CQN Senior Personnel Assistant Professor, University of

Michel Devoret

CQN Senior Personnel

CQN Senior Personnel Associate Professor, BYU

CQN Senior Personnel Professor, University of Arizona

Brian Smith

CQN Senior Personnel Associate Professor, University of

Course Outline

● Lecture 1 — Introduction to Quantum Systems (April 13, 2022)

● Lecture 2 — Teleportation and Entanglement (April 20, 2022)

● Lecture 3 — Decoherence and Quantum Networks (April 27, 2022)

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

When Classical Mechanics Fails

Mach-Zehnder Interferometer

$$\varphi = QQ$$

$$\mathbb{P}(\text{red}) = 1/2$$

$$\mathbb{P}(\text{blue}) = 1/2$$

A photon takes each exit path with equal probability

When Classical Mechanics Fails

Mach-Zehnder Interferometer

Wave-particle Duality

A particle can be thought of as both a particle and a wave

Classical Systems

A property is represented by a real-valued number

A system is represented by a point in the phase space

Evolution of a property/state is deterministic

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \frac{p}{m}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = f$$

Dirac Notation

- A column vector is represented with a "ket", e.g., $|x\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$
- A row vector is represented with a "bra", e.g., $\langle y|=\begin{bmatrix} c & d \end{bmatrix}$
- A ket can be transformed into a bra as follows: $|x\rangle \to \langle x| = \begin{bmatrix} a^* & b^* \end{bmatrix} = |x\rangle^\dagger$ (conjugate transpose)
- The inner product is represented as a bra-ket $\langle y|x\rangle=\begin{bmatrix}c&d\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}=a\cdot c+b\cdot d$
- The outer product as $|x\rangle\!\langle y| = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c & d \end{bmatrix} = \begin{bmatrix} ac & ad \\ bc & bd \end{bmatrix}$ E.g., $|x\rangle\!\langle y| \cdot |z\rangle = |x\rangle\,\langle y|z\rangle = \langle y|z\rangle\,|x\rangle$
- We consider the **computational basis** $|0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$ and $|1\rangle=\begin{bmatrix}0\\1\end{bmatrix}$

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

- Those matrices have real eigenvalues and represent the possible outcomes of measurements.
- E.g., Photon detection is a binary property that can be represented by a matrix:

$$D_0=|0\rangle\!\langle 0|=\begin{bmatrix}1\\0\end{bmatrix}\begin{bmatrix}1&0\end{bmatrix}=\begin{bmatrix}1&0\\0&0\end{bmatrix}$$
 Eigenvalues: 0 and 1

Detection: 1

Non-detection: 0

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

- Those matrices have real eigenvalues and represent the possible outcomes of measurements.
- E.g., Photon detection is a binary property that can be represented by a matrix:

eigenvalues

$$D_0=|0\rangle\!\langle 0|=\begin{bmatrix}1\\0\end{bmatrix}\begin{bmatrix}1&0\end{bmatrix}=\begin{bmatrix}1&0\\0&0\end{bmatrix}$$
 Eigenvalues: 0 and 1

Detection: 1

Non-detection: 0

$$D_1$$
 $D_1=|1
angle\langle 1|=egin{bmatrix}0\\1\end{bmatrix}egin{bmatrix}0&1\end{bmatrix}=egin{bmatrix}0&0\\0&1\end{bmatrix}$ Eigenvalues: 0 and 1

$$D = \lambda_0 D_0 + \lambda_1 D_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \lambda_0 \neq \lambda_1 \qquad \lambda_1 = -1$$

quantum measurements

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

- Those matrices have real eigenvalues and represent the possible outcomes of measurements.
- E.g., Polarization is a binary property that can be represented by a matrix:

A classical property is represented by a number

A quantum property, known as quantum observable, is represented by a matrix

eigenvalues

- Those matrices have real eigenvalues and represent the possible outcomes of measurements.
- E.g., Polarization is a binary property that can be represented by a matrix:

$$I_0=|0
angle\langle 0|=egin{bmatrix}1\\0\end{bmatrix}\begin{bmatrix}1&0\end{bmatrix}=egin{bmatrix}1&0\\0&0\end{bmatrix}$$
 Eigenvalues: 0 and 1

Pass: 1

No pass: 0

$$\varPi_1=|1\rangle\!\langle 1|=egin{bmatrix}0\\1\end{bmatrix}egin{bmatrix}0&1\end{bmatrix}=egin{bmatrix}0&0\\0&1\end{bmatrix}$$
 Eigenvalues: 0 and 1

$$\Pi = \lambda_0 \Pi_0 + \lambda_1 \Pi_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \lambda_0 \neq \lambda_1 \qquad \lambda_0 = 1$$
eigenvalues quantum measurements

14

Different Types of Observables

Observable with **two** possible values

current flow

Observable with **finite** possible values

electron excitation

polarization

number of particles, e.g., photons

Observable with infinite possible values

wave amplitude

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

Quantum System

A classical system is represented by a point in the phase space

A quantum system cannot be represented as a point due to the uncertainty principle $\mathbb{V}(Q)\mathbb{V}(P)\geqslant \frac{\hbar^2}{4}$

Quantum System

A classical system is represented by a point in the phase space

A quantum system is represented by a function in the phase space, e.g., Wigner function

A quantum system cannot be represented as a point due to the **uncertainty principle** $\mathbb{V}(Q)\mathbb{V}(P)\geqslant \frac{\hbar^2}{4}$

$$W = \frac{1}{4\pi} \int_{-\infty}^{\infty} dx \exp\left\{\frac{ixp}{2}\right\} \left\langle q - \frac{x}{2} \middle| \psi \right\rangle \left\langle \psi \middle| q + \frac{x}{2} \right\rangle$$

q: outcome of Q

p: outcome of P

x: auxiliary variable

 $|\psi\rangle$: quantum state

Quantum System

A classical system is represented by a point in the phase space

A quantum system is represented by a function in the phase space, e.g., Wigner function

A quantum system cannot be represented as a point due to the **uncertainty principle** $\mathbb{V}(Q)\mathbb{V}(P)\geqslant \frac{\hbar^2}{4}$

$$A_{ij} = \frac{1}{2} \left[(-1)^i Z + (-1)^j X + (-1)^{i+j} Y \right]$$

$$X = |0\rangle\langle 1| + |1\rangle\langle 0|$$

$$Y = -i(|0\rangle\langle 1| - |1\rangle\langle 0|)$$

$$Y = -i(|0\rangle\langle 1| - |1\rangle\langle 0|)$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

$$W_{ij} = \frac{1}{2} \operatorname{tr}(|\psi\rangle\langle\psi|A_{ij})$$

quantum state

Quantum State

A quantum system, known as quantum state, is represented by a vector

State Superposition: $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$

All states have the same length, i.e., **normalized**

$$|a|^2 + |b|^2 = 1$$

Quantum State

A quantum system, known as quantum state, is represented by a vector

State Superposition: $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$

All states have the same length, i.e., **normalized**

$$|a|^2 + |b|^2 = 1$$

Quantum State after a Measurement

Let us have the quantum state $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$

Post-measurement state $|\psi\rangle \to \frac{\varPi_i |\psi\rangle}{\sqrt{p_i}}$

$$|a|^2 + |b|^2 = 1$$

(collapse of the state) $p_1 = |b|^2$ $|1\rangle$

Examples of 2-dimensional States

Photon Detection

Electron Spin

Electron Excitation

Photon Polarization

Current Flow

Higher-Dimensional States

A d-dimensional quantum state

$$|\psi\rangle = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{d-1} \end{bmatrix} = \sum_{i=0}^{d-1} c_i |i\rangle$$

number of particles, e.g., photons

An infinite-dimensional state

$$|\psi\rangle = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \end{bmatrix} = \sum_{i=0}^{\infty} c_i |i\rangle$$

Quantum State Interpretation

A. Einstein

N. Bohr

E. Schrödinger

W. Heisenberg

Quantum State Interpretation

A quantum state corresponds to a **statistical ensemble** of independent and identically prepared copies of a quantum system

Probability Interpretation

Frequentism: The relative frequency of an event in the limit of sufficient many trials

A quantum state provides a complete description of an **individual** quantum system

Bayesianism: The degree of confidence of a hypothesis based on the prior knowledge

many worlds pilot waves

Copenhagen interpretation

quantum Bayesianism

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

Evolution of a Quantum System

The evolution of a classical property is deterministic

$$\frac{\mathrm{d}x}{\mathrm{d}t} = y$$

The evolution of a quantum property is deterministic $\frac{\mathrm{d}X}{\mathrm{d}t}=Y$

The evolution of a quantum state is described by a unitary transformation on the quantum state

$$|\psi\rangle \to U |\psi\rangle$$

- Unitary is a matrix that satisfies: $UU^\dagger = U^\dagger U = 1$ (preserves normalization)
- When $U = e^{iHt/\hbar}$ where H is the Hamiltonian of the quantum system and \hbar the reduced Planck constant the evolution is given by the **Schrödinger equation**

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle = H |\psi\rangle$$

Example of Quantum Evolution

Let us have the quantum state $|\psi\rangle=\sqrt{\frac{1}{3}}\,|0\rangle+\sqrt{\frac{2}{3}}\,|1\rangle$

evolving according to the unitary matrix $X=|0\rangle\!\langle 1|+|1\rangle\!\langle 0|$

$$\begin{split} X \mid \psi \rangle &= (\mid 0 \rangle \langle 1 \mid + \mid 1 \rangle \langle 0 \mid) \left(\sqrt{\frac{1}{3}} \mid 0 \rangle + \sqrt{\frac{2}{3}} \mid 1 \rangle \right) \\ &= \sqrt{\frac{1}{3}} \mid 0 \rangle \langle 1 \mid 0 \rangle^0 + \sqrt{\frac{2}{3}} \mid 0 \rangle \langle 1 \mid 1 \rangle^1 + \sqrt{\frac{1}{3}} \mid 1 \rangle \langle 0 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^0 \\ &= \sqrt{\frac{1}{3}} \mid 0 \rangle \langle 1 \mid 0 \rangle^0 + \sqrt{\frac{2}{3}} \mid 0 \rangle \langle 1 \mid 1 \rangle^1 + \sqrt{\frac{1}{3}} \mid 1 \rangle \langle 0 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^0 \\ &= \sqrt{\frac{1}{3}} \mid 0 \rangle \langle 1 \mid 0 \rangle^0 + \sqrt{\frac{2}{3}} \mid 0 \rangle \langle 1 \mid 1 \rangle^1 + \sqrt{\frac{1}{3}} \mid 1 \rangle \langle 0 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^0 \\ &= \sqrt{\frac{1}{3}} \mid 0 \rangle \langle 1 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 0 \rangle \langle 1 \mid 1 \rangle^1 + \sqrt{\frac{1}{3}} \mid 1 \rangle \langle 0 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^0 \\ &= \sqrt{\frac{1}{3}} \mid 0 \rangle \langle 1 \mid 0 \rangle^1 + \sqrt{\frac{2}{3}} \mid 0 \rangle \langle 1 \mid 1 \rangle^1 + \sqrt{\frac{1}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle \langle 0 \mid 1 \rangle^1 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac{2}{3}} \mid 1 \rangle^2 \langle 0 \mid 1 \rangle^2 + \sqrt{\frac$$

$$= \sqrt{\frac{2}{3}} |0\rangle + \sqrt{\frac{1}{3}} |1\rangle$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1| \qquad Z|\psi\rangle = 0$$

$$H = \frac{1}{\sqrt{2}}(X + Z) \qquad H |\psi\rangle = ?$$

 $\sqrt{\frac{2}{3}}\ket{0}$

Lecture 1 — Introduction to Quantum Systems

- Introduction
 - When Classical Mechanics Fails
 - * Review of Classical Systems
- Quantum Observables
- Quantum States
- Evolution in Quantum Systems
- Quantum Information

Quantum Information

In classical information theory we encode information onto bits

bit: 0 or 1

In quantum information theory we encode information onto quantum bits (qubits)

qubit:
$$a |0\rangle + b |1\rangle \rightarrow |0\rangle$$
 or $|1\rangle$

$$|\psi\rangle = a |0\rangle + b |1\rangle = e^{i\chi} \left(\cos\frac{\theta}{2} |0\rangle + e^{i\varphi} \sin\frac{\theta}{2} |1\rangle\right)$$

$$\chi \in [0, 2\pi]$$

$$\varphi \in [0, 2\pi]$$

$$\theta \in [0, \pi]$$

Qubit contains a bit as a special case

Next Week

● Lecture 1 — Introduction to Quantum Systems (April 13, 2022)

● Lecture 2 — Teleportation and Entanglement (April 20, 2022)

● Lecture 3 — Decoherence and Quantum Networks (April 27, 2022)

slides can be found at: spyrostserkis.com

you can reach out to me at: spyrostserkis@gmail.com

Suggested Bibliography

- Quantum Mechanics
 - * J. Townsend "A Modern Approach to Quantum Mechanics"
 - * L. Ballentine "Quantum Mechanics"
- Quantum Information
 - * J. Audretsch "Entangled Systems"
 - * M. Nielsen, I. Chuang "Quantum Computation and Quantum Information"

slides can be found at: spyrostserkis.com

you can reach out to me at: spyrostserkis@gmail.com