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1984 — Quantum Key Distri

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 usa)
Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

When elementary quantum systems, such as polarized
photons, are used to transmit digital information,
the uncertainty principle gives rise to novel cryp-
tographic phenomena unachieveable with traditional
transmission media, e.g. a communications channel on
which it is impossible in principle to eavesdrop
without a high probability of disturbing the trans-
mission in such a way as to be detected. Such a
quantum channel can be used in conjunction with or-
dinary insecure classical channels to distribute
random key information between two users with the
assurance that it remains unknown to anyone else,
even when the users share no secret information ini-
tially. We also present a protocol for coin-tossing
by exchange of quantum messages, which is secure
‘against traditional kinds of cheating, even by an
opponent with unlimited computing power, but, ironi-
cally can be subverted by use of a still subtler
quantum phenomemon, the Einstein-Podolsky-Rosen par-

adox.

principle impossible to counterfeit, and multiplex-
ing two or three messages in such a way that reading
one destroys the others. More recently [BBBW] ,
quantum coding has been used in conjunction with
public key cryptographic techniques to yield several
schemes for unforgeable subway tokens. Here we show
that quantum coding by itself achieves one of the
main advantages of public key cryptography by per-
mitting secure distribution of random key informa-
tion between parties who share no secret information
initially, provided the parties have access, besides
the guantum channel, to an ordinary channel suscep-
tible to passive but not active eavesdropping. Even
in the presence of active eavesdropping, the two
parties can still distribute key securely if they
share some secret information initially, provided
the eavesdropping is not so active as to suppress
communications completely. We also present a proto-
col for coin tossing by exchange of quantum mes-
sages. Except where otherwise noted the protocols

ution

Gilles Brassard
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1994 — Shor’s Algorithm

0(61.9(10g N)Y/3(log log N)2/3)

Classical Computer

O((log N)*(loglog N)(logloglog N))

Quantum Computer
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Peter Shor

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

A computer is generally considered to be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting

(1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both quantum Turing machines and quantum
circuits and investigated some of their properties.
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1996 — Grover’s Algorithm
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O(N)
Classical Computer

An unsorted database contains N records, of which just

one satisfies a particular property. The problem is to
40 50 identify that one record. Any classical algorithm, deter-
ministic or probabilistic, will clearly take O (N) steps
since on the average it will have to examine a large frac-
tion of the N records. Quantum mechanical systems can
do several operations simultaneously due to their wave

like properties. This paper gives an O (JN) step quan-

Lov Grover

A fast quantum mechanical algorithm for database search

Lov K. Grover
3C-404A, AT&T Bell Labs

O ( \/N) : 600 Mountain Avenue

Murray Hill NJ 07974
Quantum Computer - lkg@mhcnet.att.com

This paper applies quantum computing to a
mundane problem in information processing and pre-
sents an algorithm that is significantly faster than any
classical algorithm can be. The problem is this: there is
an unsorted database containing N items out of which
just one item satisfies a given condition - that one item
has to be retrieved. Once an item is examined, it is pos-
sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
the database that would aid its selection. The most effi-
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Entanglement

A composite guantum state that cannot be written as a tensor product of two smaller
guantum states is called entangled state

) # ) @ [)?)

Otherwise it is called separable or product state.

 Entangled systems share a common property, but we don't know which part has which
share until we measure it.

e For example, two particles have a total (sum) spin of zero, but we don't know the spin of
each individual particle before we measure it.

| +1 1 1 +1
®) = —(]01) + |10 2 2 2 2
) ﬂ(l ) +110))
0): + spi
-5 spin
1
1) - 5 spin particle 1 particle 2 particle 1 particle 2




Quantum Correlations
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Alice

Message 01101011100101

+Key 11010010010110

Encrypted text 10111001110011

Cryptography
Bob
Message 01101011100101
+Key 11010010010110
Public
Channel
——— > | Encrypted text 10111001110011

Secure communication if the key is:

the same size as the message \/
used only once \/

random

securely distributed

v

Quantum Key Distribution

C. E. Shannon, The Bell System Technical Journal (1949) J
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Quantum Key Distribution

------------------------

¢ -D P) = %(\omﬂn»

Alice <( ] > Bob %(\w + [42))
_____________ = D %ww +IRAW)
State number 1 2 3 4 5 6 7 8 9 10
Alice’s basis + | F | X |+ X | P P | X X | b
Alice’s observation| «— | <« G | J —> —> N / |
Bob's basis X | P Pt $+ | $ X + | $ X X
Bob's observation | N, | «— | \{ S | = 7N

A. K. Ekert, Phys. Rev. Lett. (1991)
C. H. Bennett, G. Brassard, N. D. Mermin, Phys. Rev. Lett. (1992)
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Quantum Key Distribution
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Alice Eve ) Bob \ N ancillary state
. N input state
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Quantum Key Distribution

£
<( b N > No Cloning Theorem
£
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Alice Eve . Bob \ N ancillary state
. £ input state
(I< I > D J. L. Park, Found. Phys. (1970)
State number 1 2 3 4 5 6 7 8 9 10
Alice’s basis <—I—> <—I—> e <—I—> Pl <—I—> <—I—> X X <_I_>
Alice's observation| <— «— o I / — < \ / I
Bob's basis e <—I—> el <—:—> <—:—> et <—I—> <—I—> X X
Bob’s observation | "\, — / | | /" — — N\ N\
Eve's basis et <—I—> <—I—> Pl <—I—> et <—I—> <—I—> <—I—> <—I—>
Eve's observation N\ —> I "\ I / —> —> I I




Quantum Key Distribution
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<( b N > No Cloning Theorem
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Alice Eve . Bob \ N ancillary state
. £ input state
(I‘ ! ’ > D J. L. Park, Found. Phys. (1970)
State number 1 2 3 4 5 6 7 8 9 10
Alice’s basis <—I—> <—I—> X <—I—> X <—I—> <—I—> o o <—I—>
Alice’s observation| <«— «—> N\ I / «— «— AN / I
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Bob's observation |\, > / : : / «— «—> AN AN
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Conclustion

e Entanglement is a fundamental physical property

e Entanglement is used as a resource in quantum technology applications

+ |. Audretsch - “Entangled Systems”

+ A. Holevo - “Quantum Systems, Channels, Information”

* S. Pirandola et al., Advances in quantum cryptography, Adv. Opt. Photonics 12, (2020)
+ F. Xu et al., Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92, (2020)

spyrostserkis@gmail.com
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